Перейти к содержимому


Фотография

Литий-ионные и литий-полимерные аккумуляторы: маркетинговые уловки и распространенные ошибки

faq lipo battery аккумуляторы

  • Закрытая тема Тема закрыта
В этой теме нет ответов

  #1 OFFLINE   Poster1

Poster1

    Вездесущ

  • Администраторы
  • 3740 сообщений
  • Город:Москва

Отправлено 09 November 2016 - 11:30 PM

Литий-ионные и литий-полимерные аккумуляторы: маркетинговые уловки и распространенные ошибки
(Источник - geektimes.ru)
 
 
Неоднократно сталкиваюсь в статьях и комментариях (в статьях все же гораздо реже) с использованием неправильных данных или названий, которые впоследствии приводятся, как аргументы, хотя на самом деле они ошибочны изначально. И эти ошибки распространяются по всем ресурсам.
 
Этой статьей я бы хотел разъяснить некоторые моменты и провести своеобразный ликбез.
 
 
Литий-полимерные аккумуляторы
Сразу с главного — в свободном доступе на рынке не существует литий-полимерных аккумуляторов в техническом смысле этого слова. В англоязычном мире с этим уже разобрались, а вот на постсоветском пространстве существуют некоторые издержки в терминологии, которыми пользуются маркетологи. Маленькое отступление — не то, чтобы этим не пользовались в других регионах, но там хотя бы есть возможность проверки этой информации на родном языке.
 
Немного истории
Любой литий-ионный аккумулятор имеет 4 основных составляющих — два электрода (анод и катод), электролит и сепаратор. Все 4 элемента развивались и развиваются дальше. Для электролита на начало исследований (1970-ые) было предложено два варианта — жидкий или твердый электролит. В то время твердый электролит обещал больше перспектив в эксплуатации — электролит не вытекает при повреждении корпуса, сам элемент более прочный. Главным недостатком было и остается высокое сопротивление твердого электролита, оно сводит на нет физические характеристики.
 
Фактически снижение количества ресурсов, выделяемых компаниями на разработку твердых электролитов, произошло в начале 1990-х, когда Sony вывела на рынок аккумулятор с жидким электролитом. Сама компания Sony еще в 1988 году была уверена в будущем успехе твердого электролита.
 
Не смотря на ориентацию на жидкий электролит компании не перестали искать альтернативы. Одним из вариантов стали так называемые гибридные электролиты. Фактически для них используется сепаратор с мелкими отверстиями и тем же жидки электролитом. Хотя он на ощупь кажется сухим, на самом деле количество электролита в нем не отличается от подобного в обычном аккумуляторе. Как в принципе и конструкция:
 
 
 
Прикрепленный файл  1.png   76.67К   3 Количество загрузок:
Схематическая модель литий-ионного аккумулятора с катодом LiCoO2 и графитовым анодом из Википедии на немецком языке.
 
 
 
 
Подобные аккумуляторы довольно распространены, их коммерческое распространение началось еще в начале 2000-х, но физически и химически это те же самые литий-ионные аккумуляторы с жидким электролитом и их в общем не очень много.
 
Что же представлено на рынке?
Одним из способов классификации аккумуляторов является его корпус. На сегодня существуют три популярных способа упаковки:
 
  • Цилиндрические ячейки
  • Призматические ячейки
  • «Мешочек» или pouch-bag ячейки
 
Первый тип аккумуляторов известен своим использованием в ноутбуках и автомобилях Тесла (там используется его самый распространенный размер 18650).
 
Второй тип является измененной формой цилиндрических. Алюминиевый корпус, прямоугольник или квадрат в поперечном сечении. Популярен для стационарного применения и в транспорте.
 
Третий тип имеет мягкий корпус и не всегда оснащается встроенной системой защиты. Фактически удешевленный вариант призматической ячейки. Этот тип аккумуляторов используется, в частности, в мобильных телефонах.
 
Последние в списке и есть те самые «полимерные». Они так называются по нескольким причинам. Самый наглый способ маркетологов — корпус из полимеров, потому и «полимерные».
 
Второй вариант — использование полимерного мелкопористого сепаратора. Фактически ничем не отличается от обычного литий-ионного аккумулятора.
 
Третий вариант, который я не встречал — давать название «полимерный» на основании использования полимерных элементов в качестве основ катодов, анодов и прочих элементов. Как правило попадает в множество аккумуляторов в пластиковом корпусе.
 
 
Проблемы терминологии
При разработке концепции идея была такова, что под понятием «жидкий электролит» понимались жидкий или гелеобразный раствор соли лития, в то время как под понятием «твердый электролит» (solid electrolyte) — твердое состояние вещества. Так как возникло желание продать то, что обещалось но чего нет, то сегодня даже в среде исследователей гелевый электролит вносят в перечень «твердых» электролитов, хотя его характеристики все же скорее гибридные. Потому можно встретить описание в научных работах «твердый гелевый электролит», которое некоторыми учеными считается вводящим в заблуждение.
 
 
Будущее полимерных электролитов
Разработки ведутся и в перспективе возможно появление аккумуляторов с настоящим полимерным электролитом. Однако по состоянию на 2015 год лабораторные образцы полимерных электролитов на основе органической химии не показывали ощутимого прогресса, потому на дату публикации статьи в обозримом будущем не предвидится массового ухода от жидкого электролита.
 
 
Разработки ведутся и в перспективе возможно появление аккумуляторов с настоящим полимерным электролитом. Однако по состоянию на 2015 год лабораторные образцы полимерных электролитов на основе органической химии не показывали ощутимого прогресса, потому на дату публикации статьи в обозримом будущем не предвидится массового ухода от жидкого электролита.
 
Проблемы с наименованием типов аккумуляторов
На рынке представлено несколько различных типов литий-ионных аккумуляторов. Они имеют различные наименования, которые позволяют описывать их характеристики в плане емкости или безопасности. В целом можно встретить следующие типы:
 
 
  • Литий-кобальтовые с катодом LiCoO2 — самые емкие модели имеют графитовый анод.
  • Литий-марганцево-оксидные с катодом LiMn2O4, Li2MnO3 или LMnO, последние могут выступать как просто литий-марганцовые
  • Литий-никель-марганец-кобальт-оксидные или NMC с катодом LiNiMnCoO2
  • Литий-железо-фосфатные с катодом LiFePO4 (LFP)
  • Литий-никель-кобальт-алюминий-оксидные (NCA) с катодом LiNiCoAlO2
  • Литий-титанат-оксидные (LTO) с анодом Li4Ti5O12

 

Сразу можно заметить неравномерность наименований. Некоторые названы в честь катода, некоторые — в честь анода. И если в первом случае еще можно попытаться угадать с высокой степенью вероятности, что анод будет графитовый, то в случае названия по аноду остается только гадать. Также на сегодня ведутся разработки и в принципе можно найти на рынке аккумулятор с катодом LiFePO4 и анодом Li4Ti5O12, т.е. литий-железо-фосфатные литий-титанатовые, которые в этой системе не имеют простого маркетингового наименования По ссылке — научная статья 2013 года с испытаниями такого аккумулятора.

 

 

Причина существования такого большого числа катодов и анодов аккумуляторов в различных требованиях к аккумуляторам. Где-то нужна бóльшая безопасность, а где-то емкость или мощность. Получить представление о запасаемой энергии можно исходя из того, что каждый тип катода и анода имеет разный потенциал, как видно из изображений ниже (в качестве потенциала в 0 В выбирается потенциал металлического лития, больше разница напряжений — больше мощность, энергетическая плотность зависит от количества атомов лития):

 

 

 

 

Прикрепленный файл  2.gif   15.91К   0 Количество загрузок:

Общая схема с потенциалами от университета г. Киль. Источник

 

 

Прикрепленный файл  3.jpg   77.66К   0 Количество загрузок:

Материал из статьи 2013 года авторов Jiantie Xu, Shixue Dou и др. Источник
 
 
Прикрепленный файл  4.png   381.04К   0 Количество загрузок:
Еще одна картинка от Purdue School of Engineering and Technology. Источник
 
 
 
 
Общее представление о причинах может давать следующее грубое изображение связи потенциалов элементов и возможности металлизация лития при очень низком разряде или термической нестабильности при перезаряде:
 
 
Прикрепленный файл  5.png   29.35К   0 Количество загрузок:
Изображения взято из курса лекций
 
Самые небезопасные в эксплуатации из представленных на рынке — литий-кобальтовые с графитовый анодом, самые безопасные — с катодом LiFePO4 и анодом Li4Ti5O12. Естественно, наличие BMS (Battery Management System) уменьшает риски, но пренебрегать ими не стоит, тот же слишком сильный разряд эта система предотвратить не сможет, что критично для аккумуляторов с графитовым анодом.
 
 
 
 
 
Распространенные ошибки
 
Общие ошибки
 
Самая главная и часто встречаемая ошибка — противопоставление «обычному литий-ионному аккумулятору». Как видно выше, такого понятия, как «обычный» просто нет. И разница в напряжениях может быть самой разной для вроде бы одинаковых катодов и одинаковой для разных наборов катодов и анодов.
 
Вторая ошибка, не столь существенная, связанная с предыдущим пунктом, написание материала катода LiFePO4 следующим образом — LiFePo4. Здесь путаница довольно распространенная и сразу показывает, насколько можно доверять такому источнику.
 
Еще одна крупная ошибка — противопоставление LiPo-аккумулятора литий-ионному. Здесь несколько вариантов сравнения. Первое — это общее, связанное с заблуждением о существовании на рынке аккумуляторов с полимерным электролитом. Второе, имеющее более узкое применение, которое обычно озвучивается в следующем виде «литий-полимерный аккумулятор [речь о корпусе] лучше/хуже LFP/LTO/NCA (подставить нужное)».
 
Здесь идет смешение типа корпуса и начинки. 
 
Например, по этой ссылке можно прочитать о LFP аккумуляторе в формате литий-полимерного (призматический корпус в данном случае).
 
 
Аккумулятор А долговечнее аккумулятора Б
 
Это еще одно своеобразное перекручивание фактов для аргументации при продаже. Такой метод применяется для разных типов аккумуляторов, но чаще всего сравнивается LFP вариант аккумулятора и литий-кобальтовый или NMC с графитовым катодом. В статьях в интернете, как рекламных так и просто популярных, можно найти соотношение полных эквивалентных циклов в 2000 к 500 в пользу LFP и как результат — рассказ о значительном превосходстве первого. 
 
Здесь есть несколько неточностей. Во-первых, бóльшее число статей по литий-кобальтовым датировано 2005-2006 годами, в то время как для LFP — с 2012-2013. Данные по циклам основаны на этих статьях. Тем не менее разработки на останавливались и были одинаково активными для всех типов аккумуляторов и разрыв не настолько большой в один и тот же временной интервал. Во-вторых, не уточняется объем энергии, который передаст за свою жизнь аккумулятор, а ведь при равных размерах LFP имеет меньшую емкость.
Что же касается главного преимущества — бóльшего числа циклов, то если брать новые исследования и сравнивать в равных условиях серийные образцы, то разница не такая и драматическая. В общей сложности она составляет 20-30% (800 циклов против 1000 для 40°C, например), что не всегда оправдывает покупку того же LFP, так как будет передано меньше энергии за счет меньшей разницы напряжений за весь срок эксплуатации.
 
Источников с непосредственным сравнением нет, поскольку сам процесс тестирования длительный и дорогостоящий, осложненный договорами про не раскрывание названий участников, но сравнивая по ряду данных можно сделать вывод об аналогичных характеристиках на сегодня для всех литий-ионных аккумуляторов в плане срока эксплуатации во всех возможных сценариях, в т.ч. и простого хранения.
 
Эти данные приведены, например, в источниках 1234567.
 
 
 
 
Прочие источники
 
 
 
 

  • 0





Темы с аналогичным тегами faq, lipo, battery, аккумуляторы

Количество пользователей, читающих эту тему: 1

0 пользователей, 1 гостей, 0 анонимных




Яндекс.Метрика

Сайт работает на хостинге Макхост